Flatpak – a solution to the Linux desktop packaging problem [Update]

Linux packaging was a nightmare for years. But recently serious contenders came up claiming to solve the challenge: first containers changed how code is deployed on servers for good. And now a solution for the desktops is within reach. Meet Flatpak!

Preface

In the beginning I probably should admit that over the years I identified packaging within the Linux ecosystem as a fundamental problem. It prevented wider adoption of Linux in general, but especially on the desktop. I was kind of obsessed with the topic.

The general arguments were/are:

  • Due to a missing standard it was not easy enough for developers to package software. If they used one of the formats out there they could only target a sub-set of distributions. This lead to lower adoption of the software on Linux, making it a less attractive platform.
  • Since Linux was less attractive for developers, less applications were created on/ported to Linux. This lead to a smaller ecosystem. Thus it was less attractive to users since they could not find appealing or helpful applications.
  • Due to missing packages in an easy-accessible format, installing software was a challenge as soon as it was not packaged for the distribution in use. So Linux was a lot less attractive for users because few software was available.

History, server side

In hindsight I must say the situation was not as bad as I thought on the server level: Linux in the data center grew and grew. Packaging simply did not matter that much because admins were used to problems deploying applications on servers anyway and they had the proper knowledge (and time) to tackle challenges.

Additionally, the recent rise of container technologies like Docker had a massive impact: it made deploying of apps much easier and added other benefits like sandboxing, detailed access permissions, clearer responsibilities especially with dev and ops teams involved, and less dependency hell problems. Together with Kubernetes it seems as there is an actual standard evolving of how software is deployed on Linux servers.

To summarize, in the server ecosystem things never were as bad, and are quite good these days. Given that Azure serves more Linux servers than Windows servers there are reasons to believe that Linux is these days the dominant server platform and that Windows is more and more becoming a niche platform.

History, client side

On the desktop side things were bad right from the start. Distribution specific packaging made compatibility a serious problem, incompatible packaging formats with RPMs and DEBs made it worse. One reason why no package format ever won was probably that no solution offered real benefits above the other. Given today’s solutions for packaging software out there RPM and DEB are missing major advantages like sandboxing and permission systems. They are helplessly outdated, I question if they are suited for software packaging at all today.

There were attempts to solve the problem. There were attempts at standardization – for example via the LSB – but that did not gather enough attraction. There were platform agnostic packaging solutions. Most notably is Klik which started already 15 years ago and got later renamed to AppImage. But despite the good intentions and the ease of use it never gained serious attention over the years.

But with the approach of Docker things changed: people saw the benefits of container formats and the technology technology for such approaches was widely available. So people gave the idea another try: Flatpak.

Flatpak

Flatpak is a “technology for building and distributing desktop applications on Linux”. It is an attempt to establish an application container format for Linux based desktops and make them easy consumable.

According to the history of Flatpak the initial idea goes way back. Real work started in 2014, and the first release was in 2015. It was developed initially in the ecosystem of Fedora and Red Hat, but soon got attention from other distributions as well.

Many features look somewhat similar to the typical features associated with container tools like Docker:

  • Build for every distro
  • Consistent environments
  • Full control over dependencies
  • Easy to use  build tools
  • Future-proof builds
  • Distribution of packages made easy

Additionally it features a sandboxing environment and a permissions system.

The most appealing feature for end users is that it makes it simple to install packages and that there are many packages available because developers only have to built them once to support a huge range of distributions.

By using Flatpak the software version is also not tied to the distribution update cycle. Flatpak can update all installed packages centrally as well.

Flathub

One thing I like about Flatpak is that it was built with repositories (“shops”) baked right in. There is a large repository called flathub.org where developers can submit their applications to be found and consumed by users:

The interface is simple but has a somewhat proper design. Each application features screenshots and a summary. The apps themselves are grouped by categories. The ever changing list of new & updated apps shows that the list of apps is ever growing. A list of the two dozen most popular apps is available as well.

I am a total fan of Open Source but I do like the fact that there are multiple closed source apps listed in the store. It shows that the format can be used for such use cases. That is a sign of a healthy ecosystem. Also, there are quite a few games which is always good 😉

Of course there is lots of room for improvement: at the time of writing there is no way to change or filter the sorting order of the lists. There is no popularity rating visible and no way to rate applications or leave comments.

Last but not least, there is currently little support from external vendors. While you find many closed source applications in Flathub, hardly any of them were provided by the software vendor. They were created by the community but are not affiliated with the vendors. To have a broader acceptance of Flatpak the support of software vendors is crucial, and this needs to be highlighted in the web page as well (“verified vendor” or similar).

Hosting your own hub

As mentioned Flatpak has repositories baked in, and it is well documented. It is easy to generate your own repository for your own flatpaks. This is especially appealing to projects or vendors who do not want to host their applications themselves.

While today it is more or less common to use a central market (Android, iOS, etc.) some still prefer to keep their code in there hands. It sometimes makes it easier to provide testing and development versions. Other use cases are software which is just developed and used in-house, or the mirroring of existing repositories for security or offline reasons: such use cases require local hubs, and it is no problem at all to bring them up with Flatpak.

Flatpak, distribution support

Flatpak is currently supported on most distributions. Many of them have the support built in right from the start, others, most notably Ubuntu, need to install some software first. But in general it is quite easy to get started – and once you did, there are hundreds of applications you can use.

What about the other solutions?

Of course Flatpak is not the only solution out there. After all, this is the open source world we are talking about, so there must be other solutions 😉

Snap & Snapcraft

Snapcraft is a way to “deliver and update your app on any Linux distribution – for desktop, cloud, and Internet of Things.” The concept and idea behind it is somewhat similar to Flatpak, with a few notable differences:

  • Snapcraft also target servers, while Flatpak only targets desktops
  • Among the servers, Snapcraft additionally has iot devices as a specific target group
  • Snapcraft does not support additional repositories; there is only one central market place everyone needs to use, and there is no real way to change that

Some more technical differences are in the way packages are built, how the sandbox work and so on, but we will noch focus on those in this post.

The Snapcraft market place called snapcraft.io provides lists of applications, but is much more mature than Flathub: it has vendor testimonials, features verified accounts, multiple versions like beta or development can be picked from within the market, there are case stories, for each app additional blog posts are listed, there is integration with social accounts, you can even see the distribution by countries and Linux flavors.

And as you can see, Snapcraft is endorsed and supported by multiple companies today which are listed on the web page and which maintain their applications in the market.

Flathub has a lot to learn until it reaches the same level of maturity. However, while I’d say that snapcraft.io is much more mature than Flathub it also misses the possibility to rate packages, or just list them by popularity. Am I the only one who wants that?

The main disadvantage I see is the monopoly. snapcraft.io is tightly controlled by a single company (not a foundation or similar). It is of course Canonical’s full right to do so, and the company and many others argue that this is not different from what Apple does with iOS. However, the Linux ecosystem is not the Apple ecosystem, and in the Linux ecosystem there are often strong opinions about monopolies, closed source solutions and related topics which might lead to acceptance problems in the long term.

Also, technically it is not possible to launch your own central server for example for in-house development, or for hosting a local mirror, or to support offline environments or for other reasons. To me this is particularly surprising given that Snapcraft targets specifically iot devices, and I would run iot devices in an closed network wherever I can – thus being unable to connect to snapcraft.io. The only solution I was able to identify was running a http proxy, which is far from the optimal solution.

Another a little bit unusual feature of Snapcraft is that updates are installed automatically, thanks to theo.9dor for the hint:

The good news is that snaps are updated automatically in the background every day! 

https://tutorials.ubuntu.com/tutorial/basic-snap-usage#2

While in the end a development model with auto deployments, even dozens per day, is a worthwhile goal I am not sure if everyone is there yet.

So while Snapcraft has a mature market place, targets much more use cases and provides more packages to this date, I do wonder how it will turn out in the long run given that we are talking about the Linux ecosystem here. And while Canonical has quite some experience to develop their own solutions outside the “rest” of the community, those attempts seldom worked out.

AppImage

I’ve already mentioned AppImage above and I’ve written about it in the past when it was still called Klik. AppImage is “way for upstream developers to provide native binaries for Linux”. The result is basically a file that contains your entire application and which you can copy everywhere. It exists for more than a dozen years now.

The thing that is probably most worth mentioning about it is that it never caught on. After all, already long time ago it provided many impressive features, and made it possible to install software cross distribution. Many applications where also available as AppImage – and yet I never saw wider adoption. It seems to me that it only got traction recently because Snapcraft and Flatpak entered the market and kind of dragged it with them.

I’d love to understand why that is the case, or have an answer to the “why”. I only have few ideas but those are just ideas, and not explanations why AppImage, in all the years, never managed to become the Docker of the Linux desktop.

Maybe one problem was that it never featured a proper store: today we know from multiple examples on multiple platforms that a store can mean the difference. A central place for the users to browse, get a first idea of the app, leave comments and rate the application. Docker has a central “store”, Android and iOS have one, Flatpak and Snapcraft have one. However, AppImage never put a focus on that, and I do wonder if this was a missed opportunity. And no, appimage.github.io/apps is not a store.

Another difference to the other tools is that AppImage always focused on the Open Source tools. Don’t get me wrong, I appreciate it – but open source tools like Digikam were available on every distribution anyway. If AppImage would have focused to reach out to closed source software vendors as well, together with marketing this aggressively, maybe things would have turned out differently. You do not only need to make software easily available to users, you also need to make software available the people want.

Last but not least, AppImage always tried to provide as many features as possible, while it might have benefited from focusing on some and marketing them stronger. As an example, AppImage advertises that it can run with and without sandboxing. However, sandboxing is a large benefit of using such a solution to begin with. Another thing is integrated updates: there is a way to automatically update all appimages on a system, but it is not built in. If both would have been default and not optional, things maybe would have been different.

But again, these are just ideas, attempts to find explanations. I’d be happy if someone has better ideas.

Disadvantages of the Flatpak approach

There are some disadvantages with the Flatpak approach – or the Snapcraft one, or in general with any container approach. Most notably: libraries and dependencies.

The basic argument here is: all dependencies are kept in each package. This means:

  • Multiple copies of the same libraries on the system, leading to larger disk consumption
  • Multiple copies of the same library in the RAM during execution, leading to larger memory consumption
  • And probably most important: if a library has a security problem, each and every package has to be updated

Especially the last part is crucial: in case of a serious library security problem the user has to rely on each and every package vendor that they update the library in the package and release an updated version. With a dependency based system this is usually not the case.

People often compare this problem to the Windows or Java world were a similar situation exists. However, while the underlying problem is existent and serious, with Flatpak at least there is a sandbox and a permission system something which was not the case in former Windows versions.

There needs to be made a trade off between the advanced security through permissions and sandboxing vs the risk of having not-updated libraries in those packages. That trade off is not easily done.

But do we even need something like Flatpak?

This question might be strange, given the needs I identified in the past and my obvious enthusiasm for it. However, these days more and more apps are created as web applications – the importance of the desktop is shrinking. The dominant platform for users these days are mobile phones and tablets anyway. I would even go so far to say that in the future desktops will still be there but mainly to launch a web browser

But we are not there yet and today there is still the need for easy consumption of software on Linux desktops. I would have hoped though to see this technology and this much traction and distribution and vendor support 10 years ago.

Conclusion

Well – as I mentioned early on, I can get somewhat obsessed with the topic. And this much too long blog post shows this for sure 😉

But as a conclusion I say that the days of difficult-to-install-software on Linux desktops are gone. I am not sure if Snapcraft or Flatpak will “win” the race, we have to see that.

At the same time we have to face that desktops in general are just not that important anymore.  But until then, I am very happy that it became so much easier for me to install certain pieces of software in up2date versions on my machine.

19 thoughts on “Flatpak – a solution to the Linux desktop packaging problem [Update]”

  1. “But despite the good intentions and the ease of use it never gained serious attention over the years.”

    Unless you mean “corporate attention” when you say “serious attention”, that’s wrong.

    1. Corporate attention is part of it – why should it not be? And yes, working in the Linux field professionally now for over ten years I never came across AppImage. Not even once.

      But even if i leave that out, let me explain why I draw the above mentioned conclusion. While I was always very interested since the first Klik releases I hardly ever saw AppImage (or Klik, or Klik2, or PortableLinuxApps) out there. Not during the time I was supporting multiple Linux Desktop projects of various sizes and target environments. Not during the time when I was working as a freelance author. Only very seldom on any conferences out there. In all the countless blog reports if Linux is ready for the desktop “this year” or not AppImage was also rarely mentioned. Not to speak of any analyst reports out there, or any of the (often futile) attempts to gather real metrics about Linux.

      But there might be a lot I missed, so I would be more than happy if you could point me to any robust information about a wider spread of AppImage. As you saw I dedicated quite a large piece of this article to AppImage and that I fail to understand the dynamics there. So I would be more than happy to learn.

  2. I loved this read, but I think you missed the biggest con for snap: forcefully automatic updates! Automatic update as a option (like deb or flatpak) is a good thing, but forcing it taking the option away from the user is a disaster waiting to happen. The only way the user will be aware of a update in a real life scenario is if the software no longer works/crashes or the interface has changed, guess how happy the user will be if this sneaky update takes place a few moments before a conference or worse. And he/she will not know why because the user is not aware at all that any update has taken place. Or if you’re a user with limited permissions you even have NO option to downgrade, reverting a snap to a previous version requires sudo. That’s fun if your IT person on your workplace is not available that day…. It’s by design, it’s made for iot, and it’s a dumb design for desktop.

    1. Thanks for the comment – and you are right, I totally forgot about it, though I even read some very angry discussions about this somewhere. I will try to add it to the article. 🙂

  3. As far as I know common libraries live in “runtimes” and updated once for all, if an app needs additional libraries or specific version of a library can ship them (in case of multiple version of the same library the storage used shouldn’t increase too much because of OSTree). I think this is more than a compromise, this is a great solution.

  4. I’ll migrate my packaging efforts to Flatpak once someone adds support for it to Open Build Service. Until then I’m happy with OBS’s cross-distro support.

    1. Interesting, I totally missed GNU GUIX.
      Besides, do you have reliable information about how much ZeroInstall is used. I must say I hardly ever came across it….

  5. ZeroInstall and GNU GUIX are package managers, but uses custom repositories. Both allowing to install software user-wide, both uses directories with name as hash of package to store package in, etc. While admin allows, ZeroInstall allows user to install software into system-wide directory. GNU GUIX probably install software installing by user into user home directory (i didn’t remember). GNU/GUIX run software in prepared environment (container), attaching entire dependency tree to this container (maybe it’s better than flatpak framework, I don’t know). You must take a look at way to describe dependencies – there’s no software version, but hash.

    1. Regarding GNU/GUIX and containers: the documentation only mentions containers as part of the build process, and not as part of the runtime. In fact, there was little to be found about any kind of permissions management or control.
      Regarding the dependencies, hashes are an interesting concept to deal with dependencies. But the question is if this solves enough real life problems, given that it becomes more and more common to include the dependencies in the packages themselves.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.