[Howto] Reference Ansible variables between plays

Ansible LogoAnsible’s strenght is to work with all kinds of devices and services – in one go. To properly call a variable value from one server while working on another host the variable needs to be referenced properly.

One of the major strength about Ansible is the capability to almost seamlessly talk to different hosts, devices and services. That’s agent-less at its best!

However, to do that often variables of one host need to be referenced on another. For the sake of an example, imagine a monitoring server which needs to ssh to the managed nodes. The task is to first collect the public SSH key of the monitoring server and afterwards add it to the managed nodes.

First you need a play to collect the SSH key:

- name: fetch ssh key 
  hosts: monitoringserver

    - name: fetch ssh key from monitoring server
        src: ~/.ssh/id_rsa.pub
      register: monitoringsshkey

After that, the key needs to be distributed. It makes sense to just add a second play to the same playbook. However, since the ssh key was fetched in the first play, it is not possible to just reference it as {{ monitoringsshkey }}. That would lead to an error:

fatal: [managednode.qxyz.de]: FAILED! => {"failed": true, "msg": "the field 'args' has an invalid value, which appears to include a variable that is undefined. The error was: 'monitoringsshkey' is undefined\n\nThe error appears to have been in '/home/liquidat/ansible/sshkey.yml': line 19, column 7, but may\nbe elsewhere in the file depending on the exact syntax problem.\n\nThe offending line appears to be:\n\n  tasks:\n    - name: Distribute SSH to nodes\n      ^ here\n"}

Instead, the variable needs to be referenced properly, highlighting the actual host it is coming from:

- name: provide ssh key
  hosts: managednode.qxyz.de

    - name: Distribute SSH to nodes
        user: liquidat
        key: "{{ hostvars['monitoringserver']['monitoringsshkey']['content'] | b64decode }}"

The reason for this need is simple: in his example we had only one host targeted in the first play – but it could also easily be five hosts. In that moment, Ansible could not reliably know which variable value to pick if we do not specify the actual host.


[Short Tip] Call Ansible or Ansible Playbooks without an inventory

Ansible Logo

Ansible is a great tool to automate almost anything in IT. However, one of the core concepts of Ansible is the inventory where the to be managed nodes are listed. However, in some situations setting up a dedicated inventory is overkill.

For example there are many situation where admins just want to ssh to a machine or two to figure something out. Ansible modules can often make such SSH calls in a much more efficient way, making them unnecessary – but creating a inventory first is a waste of time for such short tasks.

In such cases it is handy to call Ansible or Ansible playbooks without an inventory. In case of plain Ansible this can be done by  addressing all nodes while at the same time limiting them to an actual hostslist:

$ ansible all -i jenkins.qxyz.de, -m wait_for -a "host=jenkins.qxyz.de port=8080"
jenkins.qxyz.de | SUCCESS => {
    "changed": false, 
    "elapsed": 0, 
    "path": null, 
    "port": 8080, 
    "search_regex": null, 
    "state": "started"

The comma is needed since Ansible expects a list of hosts – and a list of one host still needs the comma.

For Ansible playbooks the syntax is slightly different:

$ ansible-playbook -i neon.qxyz.de, my_playbook.yml

Here the “all” is missing since the playbook already contains a hosts directive. But the comma still needs to be there to mark a list of hosts.

Ansible Tower 3.1 – screenshot tour

Ansible LogoAnsible Tower 3.1 was just released. Time to have a closer look at some of the new features like the workflow editor.

Just a few days ago, Ansible Tower 3.1 was released. Besides the usual bug fixes, refinements of the UI and similar things this Tower version comes with major new feature: a workflow editor, scale out clustering, integration with logging providers and a new job details page.

The basic idea of a workflow is to link multiple job templates coming one after the other. They may or may not share inventory, playbooks or even permissions. The links can be conditional: if job template A succeeds, job template B is automatically executed afterwards, but in case of failure, job template C will be run. And the workflows are not even limited to job templates, but can also include project or inventory updates.

This enables new applications for Tower: besides the rather simple execution of prepared job templates, now different workflows can build upon each other. Imagine the networking team which creates a playbooks with their own content, in their own Git repository and even targeting their own inventory, while the operations team also has their own repos, playbooks and inventory. With older Tower versions there would be no simple way to bring these totally separated ways together – with 3.1 this can be done even with a graphical editor.

Workflows can be created right from the job template page. As can be seen that page got an overhaul:


The button to add a new template offers a small arrow to get a menu from which a workflow can be set up.

Afterwards, the workflow needs to be defined – name, organization, etc. This is a necessary step, before the actual links can be created:


As shown in the screenshot above from this screen on the actual editor can be started. And I must admit that I was surprised of how simple but yet rather elegant the editor looks like and works. It takes hardly any time to get used to, and the result is visually appealing and easily understandable:


The above screenshot shows the major highlights: links depending on the result of the previous job template in red and green, blue links which are executed every time, a task in the workflow to update a project (indicated by the “P”), and the actual editor.

As mentioned at the beginning, there are more features in this new Tower release. The clustering feature is an explicitly interesting feature for load balancing and HA setups, though I have not tested it yet. Another possibility is the integration of logging providers right into the UI:


As shown above a logstash logging provider  was configured to gather all the Tower logs. Other possible providers are  splunk, and in general everything which understands REST calls.

A change I yet have to get familiar with is the new view on the jobs page, showing running or completed jobs:

The new view is much more tailored to the output of ansible-playbook, showing the time at each task. Also, a search bar has been added which can be used to search through the results rather easily. Each taks can be clicked at to get much more details about the task. However, in the old view I liked the possibility to simply click through a play and the single tasks, getting the list of hosts adjusted automatically, etc. I can already see that the change will be for the better – but I have to get used to it first 😉

Overall the new release is pretty impressive. Especially the workflow editor will massively help bringing different teams even closer in automation (DevOps, anyone?). Also, the cluster feature will certainly help create stable, HA like setups of Tower. The UI might take some time to get used to, but that’s ok, since there will be a benefit at the end.

So, it is a great release – get started now!

Ansible community modules for Oracle DB & ASM

Ansible LogoBesides the almost thousand modules shipped with Ansible, there are many more community modules out there developed independently. A remarkable example is a set of modules to manage Oracle DBs.

The Ansible module system is a great way to improve data center automation: automation tasks do not have to be programmed “manually” in shell code, but can be simply executed by calling the appropriate module with the necessary parameters. Besides the fact that an automation user does not have to remember the shell code the modules are usually also idempotent, thus a module can be called multiple times and only changes something when it is needed.

This only works when a module for the given task exists. The list of Ansible modules is huge, but does not cover all tasks out there. For example quite some middleware products are not covered by Ansible modules (yet?). But there are also community modules out there, not part of the Ansible package, but nevertheless of high quality and developed actively.

A good example of such 3rd party modules are the Oracle DB & ASM modules developed by oravirt aka Mikael Sandström, in a community fashion. Oracle DBs are quite common in the daily enterprise IT business. And since automation is not about configuring single servers, but about integrating all parts of a business process, Oracle DBs should also be part of the automation. Here the extensive set of Ansible modules comes in handy. According to the README (shortened):

  • oracle_user
    • Creates & drops a user.
    • Grants privileges only
  • oracle_tablespace
    • Manages normal(permanent), temp & undo tablespaces (create, drop, make read only/read write, offline/online)
    • Tablespaces can be created as bigfile, autoextended
  • oracle_grants
    • Manages privileges for a user
    • Grants/revokes privileges
    • Handles roles/sys privileges properly.
    • The grants can be added as a string (dba,’select any dictionary’,’create any table’), or in a list (ie.g for use with with_items)
  • oracle_role
    • Manages roles in the database
  • oracle_parameter
    • Manages init parameters in the database (i.e alter system set parameter…)
    • Also handles underscore parameters. That will require using mode=sysdba, to be able to read the X$ tables needed to verify the existence of the parameter.
  • oracle_services
    • Manages services in an Oracle database (RAC/Single instance)
  • oracle_pdb
    • Manages pluggable databases in an Oracle container database
    • Creates/deletes/opens/closes the pdb
    • saves the state if you want it to. Default is yes
    • Can place the datafiles in a separate location
  • oracle_sql
    • 2 modes: sql or script
    • Executes arbitrary sql or runs a script
  • oracle_asmdg
    • Manages ASM diskgroup state. (absent/present)
    • Takes a list of disks and makes sure those disks are part of the DG. If the disk is removed from the disk it will be removed from the DG.
  • oracle_asmvol
    • Manages ASM volumes. (absent/present)
  • oracle_ldapuser
    • Syncronises users/role grants from LDAP/Active Directory to the database
  • oracle_privs
    • Manages system and object level grants
    • Object level grant support wildcards, so now it is possible to grant access to all tables in a schema and maintain it automatically!

I have not yet had the change to test the modules, but I think they are worth a look. The amount of quality code, the existing documentation and also the ongoing development shows an active and healthy project, development important and certainly relevant modules. Please note: these modules are not part of the Ansible community, nor part of any offering from Oracle or anyone else. So use them at your own risk, they probably will eat your data. And kittens!

So, if you are dealing with Oracle DBs these modules might be worth to take a look. And I hope they will be pushed upstream soon.

[Short Tip] Retrieve your public IP with Ansible

Ansible Logo

There are multiple situations where you need to know your public IP: be it that you set up your home IT server behind a NAT, be it that your legacy enterprise business solution does not work properly without this information because the original developers 20 years ago never expected to be behind a NAT.

Of course, Ansible can help here as well: there is a tiny, neat module called ipify_facts which does nothing else but retrieving your public IP:

$ ansible localhost -m ipify_facts
localhost | SUCCESS => {
    "ansible_facts": {
        "ipify_public_ip": ""
    "changed": false

The return value can be registered as a variable and reused in other tasks:

- name: get public IP
  hosts: all 

    - name: get public IP
      register: public_ip
    - name: output
      debug: msg="{{ public_ip }}"

The module by default accesses https://api.ipify.org to get the IP address, but the api URL can be changed via parameter.

[Short Tip] Show all variables of a host

Ansible Logo

There are multiple sources where variables for Ansible can be defined. Most of them can be shown via the setup module, but there are more.

For example, if you use a dynamic inventory script to access a Satellite server many variables like the organization are provided via the inventory script – and these are not shown in setup usually.

To get all variables of a host use the following notation:

- name: dump all
  hosts: all

  - name: get variables
    debug: var=hostvars[inventory_hostname]

Use this during debug to find out if the variables you’ve set somewhere are actually accessible in your playbooks.

If even created a small github repository for this to easily integrate it with Tower.

[Short Tip] Fix mount problems in RHV during GlusterFS mounts

Gluster Logo

When using Red Hat Virtualization or oVirt together with GLusterFS, there might be a strange error during the first creation of a storage domain:

Failed to add Storage Domain xyz.

One of the rather easy to fix reasons might be a permission problem: an initial Gluster exported file system belongs to the user root. However, the virtualization manager (ovirt-m bzw. RHV-M) does not have root rights and such needs another ownership.

In such cases, the fix is to mount the exported volume & set the user rights to the rhv-m user.

$ sudo mount -t glusterfs /mnt
# cd /mnt/
# chown -R 36.36 .

Afterwarsd, the volume can be mounted properly. Some more general details can be found at RH KB 78503.